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ABSTRACT

Aiming at an accurate and effective CAD procedure for Cir-

cular Waveguide (CW) dual-mode titers without tuning

screws, the Boundary Integral Equation Method (BIEM)
is applied to TM/TE mode analysis of Multi-Ridge Circular

Waveguide (MRCW) and evaluation of CW-MRCW mode

coupling coefficients to obtain the Multi-Mode Network (Y-

Matrix) Representation (MMNR) of CW-MRCW transi-

tions. A novel Multiple Elgenvalue Search Algorithm as-

sures completeness of the modal spectrum up to large mode

indices (> 100) in the presence of accidental degeneracies

and clusters of eigenvalues.

INTRODUCTION

CW dual-Mode filters offer high Q-factors at reduced size

and weight, but the high expenditure for manurd tuning is

a major drawback. Replacement of tuning screws by ex-

actly premachined sections of MRCW (Fig. 1) was there-

fore proposed in [1]. To make it feasible, accurate design

tools are required: essentially a rigorous electmnmgnetic

jield (EMF) analysis embedded in a filter optimization proce-

dure. A rigorous approach to this problem is the well known

MMNR of discontinuities between cascaded waveguide sec-

tions (e.g. [2]). By decomposing the problem such as to leave

the EMF analysis part (determination of cut-off frequencies

and modal coupling coefficients) frequency independent and

only a relatively simple multi-mode transmission line net-

work analysis frequency dependent, it is also very efficient.

Fig. 1: Short sec-

tion of MRCW

replaces tuning

screws in a CW

dual-mode filter.

As opposed to some classical applications (e.g. [3]),

MRCW cut-off frequencies and CW-MRCW modal cou-

pling coefficients are accessible only by numerical methods.

This problem has been subject of a considerable number of

investigations in the recent past [1, 4, 5, 6, 7]. Apart from

accuracy and efficiency requirements, completeness of the

computed spectrum up to large mode indices (typically sev-

eral hundreds), for all geometrical parameters encountered

within an optimization loop, is a key problem in this context.

Up to now, there is, to the authors knowledge, only a single

very recent publication [8] which gives results for more than

a few low order modes in MRCW.

Combining the MMNR with the BIEM [9, 10] offers sev-

eral distinct advantages. The 3-d EMF problem is reduced

to a set of 1-d eigenvalue problems for plain functions. Cou-

pling coefficients are efficiently obtained as l-d inner prod-

ucts over these functions. Also, in contrast to numerical

methods which dictate allowed ridge shapes [7, 8], exact

parametric representation of an arbitrarily curved waveguide

contour is possible. Furthermore, field singularities can eas-

ily be accounted for.

ANALYTICAL FORMULATION

The fields within a waveguide cross-section (l c IR2 (Fig. 1)

can be derived from TM and TE Hertz potentials m& and

a~~, respectively, where ~~, ~~ : fl + R are eigenfunc-

tions of the Hehnholtz equation with eigenvalues h~ c IQ

(TM) and h: e ~ (TE). The BIEM reduces the 2-d eigen-
value problems to 1-d eigenvalue problems for the traces

u: I--+~ Sk-+ +(T(S)) (1)

and v : I + ~ s * nr grad. @(r(s)) (2)

of ~~ and ~~ along the waveguide contour (30 with the pa-

rametrization r : I + Ml,s + T(s). v~ and u;, which

correspond to TM mode axial and TE mode transverse tan- ERgential surface current densities, respectively, are obtained as .

eigenfunctions of the BIEs

G[v’](t) :=
J

g~~(t, S)V’(S) ds = O (3)

I \{t}
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and

K[u’’](t) :=/ U“(S) (hw~(t, S) – kIJ(t, S)) ds

1

/
+ (U’’(S) - d’(t)) k,(t, S) ds = O. (4)

I \{t}

Whh the abbreviations p:= ?’(t)and q := r(s),the kernels

are given by g~(t, s) := Ko(j h Ilp– qll),which for h = O

becomes go (t,s) = – ln(llp – qll),and its normal deriva-

tive kh (t,s) := n(s) gradq gh (t, s). The decomposition of

the integral in (4) assures uniform convergence of each term

as r(t) approaches a singular boundary point, which is re-

quired for numerical evaluation of the integrals [9].

For evaluation of coupling coefficients only the above

traces VA and u: for MRCW and in addition the analytically

accessible traces u~ and v: of TM and TE modes in CW

with respect to the MRCW contour and their eigenvalues h~

and h: are required. With the understanding that subscript

m refers to CW and subscript n to MRCW quantities, respec-

tively, the non-vanishing coupling coefficients are obtained

as

CTM,TM _
h;2

m,n — h~2 – &2 /
U~(S)V~ (S) ds, (5)

I

~TM,TE _

/

d
m,n — U&(S)& U:(S) ds, (6)

and I

~TE,TE _
h;2

m,n — h;z – h;2 JV: (S) U:(S) ds. (7)

I

The integrals extend over I = r–l (aflMRcw) C R. The

usual definition would require that all the trace functions in

(5)-(7) are normalized such that each mode carries apowerof

unity. For the MRCW modes this normalization is not easily

obtained with the present approach. In a cascaded structure,

however, mode normalization is of significance only in the

reference planes. If these allow for analytical treatment, as

in the case of CW, lack of a normalization procedure presents

no problems.

NUMERICAL PROCEDURE

For approximate numerical solution of(3) and (4) the trace

functions v: and u; are expanded into IV quadratic B-splines

over a partition of the Interval I which maps onto c9fl with

approx, 4 elements per transverse wavelength ,A~in of the

highest desired mode (Fig. 2). A priori estimates of Amin are

obtained from the asymptotical distributions of CW eigen-

values. To solve for the first 100 TE or TM modes requires

no more than approx. 100 expansion functions. The small

(a)

Fig. 2: Geomedical parameters and boundary p~”tion for

MRCW with (a) rectangular and (b) circular ridge shape.

number reflects the absence of orthogonality relations be-

tween trace functions for different eigenvalues. While u“

(TE mode tangential surface current density) is regular and

well represented with B-splines, v’ (TM mode axial sur-

face current density) exposes weak singularities about sin-

gular boundary points. Apart from a non-equidistant parti-

tion (Fig. 2a) edge terms with the precomputed asymptoti-

cally exact singular behaviour are therefore added. Numeri-

cal evaluation of the integrals comprises an adaptive per ele-

ment coordinate transform to remove kernel and edge singu-

larities followed by a modified Romberg scheme which ter-

minates at a specified relative error (typically 10-7). This

approach decouples the integration error from the number of

expansion functions and such assures an accurate represen-

tation of curved boundary segments. Discretization of the

residual of the BIEs relies on the Method of Least Squares

with Intermediate Projection with approx. 2N weighting

functions, an approach which is necessary to exclude the oc-

currence of spurious solutions [11]. The final (overdeter-

mined) homogeneous matrix equations are solved by singu-

lar value decomposition (SVD). For given trial value of h

(i.e. either h’ or h“), the smallest attainable residual is just

the smallest singular value ~N (h). Near zeroes of fSN(h) in-

dicate that the corresponding singular vector CN (h) approx-

imates the coefficients of expansion of an eigenfunction.

Multiple eigenvalue search algorithm

The key problem for the present application is completeness

of the spectrum up to large mode indices (hundreds of TE and

TM modes, each) for any set of geometry parameters which

may be encountered within an optimization loop. Accidental

degeneracies and clustering of eigenvalues, however, present

a severe problem for all methods which include a search pro-

cedure for detection of eigenvalues. Approaches which rely

on tracing the minimally attainable residual ~A7(h) are bound

to fail, however small the sampling interval may be chosen

(Fig. 3a).

The solution to this problem was accomplished by a novel

Multiple Eigenvalue Search Algorithm (MESA). It is based
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on (i) the analyticity of all quantities with respect to h, (ii)

the orthogonality between degenerate trace functions and

(iii) the fact that the SVD yields, for each trial value of

h, a set of mutually orthogonal candidate solutions (the

singular vectors C;(h)) ordered in sequence of decreasing

residual (the singular values ai (h)). As a consequence de-

generate solutions identify as near zeroes of the residu-

~S qv(h), ~~-1 (h), . . . of two or more orthogonal candi-
date solutions C~, C~-l (h),. . . . Due to analyticity in h,

closely neighbored eigenvalues still correspond to almost or-

thogonal traces and singular vectors. Hence, by introducing

an index transformation P : {l,.. .N} + {1,... ,N},

based on comparing inner products between singular vectors

Ci(h) and Cj (h+ Ah), it is possible to define residual func-

tions Ti (h) := Op(i) (h) which are bound to and evolve to-

gether with a specific candidate solution (Fig. 3b). By ex-

amination of the smallest (currently 6) of these residual func-

tions identification of very closely neighbored eigenvalues is

put on the same footage as that of degenerate eigenvalues.

The approach allows for reliable detection of all eigenvalues

with little numerical overhead. It even improves overall ef-

ficiency by allowing for a larger sampling interval Ah.

APPLICATION EXAMPLES

The method has proven successful in determination of large

numbers of TE and TM modes and evaluation of coupling

constants for several MRCW configurations with rectangu-

lar (Fig. 2a), circular (Fig. 2b) and also trapezoidal ridges.

Only a few typical results can be given here. Fig. 4 displays

the dependence of TM and TE eigenvalues on the penetra-

tion of the coupling ridge for a MRCW configuration which

was previously considered in [1]. Fig. 5 shows the surface

current density along &l for two randomly selected TM and

TE modes in this configuration. The TM mode edge singu-

larities are clearly a disadvantage because they require for a

large number of CW modes within the MMNR, and also add

to ohmic losses. They can be avoided with a smooth ridge

shape and it may be counted as one of the advantages of the

present approach that there are basically no restrictions on
the shape of the MRCW contour. Results for circular ridge

Fig. 3: Typical example for (a)

minimum residual UN (h”) of(4)

as usually considered, (b) set of

residual functions rj (h”) as in-

troduced in the new algorithm

(MESA) which allows for re-

liable detection of (nearly) de-

generate modes. Arrows mark

eigenvalues,

shape (Fig. 2b) are given in Fig. 6 with the penetration of the

horizontal pair of tuning ridges as a parameter. Fig. 7 illus-

trates the absence of edge singularities,
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Fig. 4: Influence of coupling ridge penetration (1 – dc) on (a) the first 17 TM and

(b) the first 30 TE eigenvalues for the MRCW of Fig. 2a with dh = & = 0.8, bh =

b. = 0,26105 and b. = 0.08724. Symbols refer to data from [1].

Fig. 5: Illustration of (a,b) axial and (c,d) transverse tangential surface current den-

sities along the MRCW contour of Fig. 2a with parameters as given in the caption of

Fig. 4 and d. = 0.55 in case (a), d. = 0.75 in case (b) and dc = 0.8 in cases (c) and

(d).

(a) Js,a for 1st TM mode
,:
i!

(b) J~,a for 23rd TM mode

(c) Js,t for 1st TE mode

(d) Js,t for 53rd TE mode
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(a) parameter dh ————+ (b) parameter dh _

Fig. 6: Depen-

dence on the

parameter dh of

(a) the first 11 TM

and (b) the first

21 TE eigenvalues

for the MRCW

of Fig. 2b with

d, = 0.7 and

d. = 0.9 fixed.
,00

Fig. 7: Avoidance of TM-mode sin-
gulw”ties due to smooth ridge shape

for MRCW of Fig. 2b with dh = 0.8,

& = 0.7 andd~ = 0.9.
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