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ABSTRACT

Aiming at an accurate and effective CAD procedure for Cir-
cular Waveguide (CW) dual-mode filters without tuning
screws, the Boundary Integral Equation Method (BIEM)
is applied to TM/TE mode analysis of Multi-Ridge Circular
Waveguide (MRCW) and evaluation of CW-MRCW mode
coupling coefficients to obtain the Multi-Mode Network (Y-
Matrix) Representation (MMNR) of CW-MRCW transi-
tions. A novel Multiple Eigenvalue Search Algorithm as-
sures completeness of the modal spectrum up to large mode
indices (> 100) in the presence of accidental degeneracies
and clusters of eigenvalues.

INTRODUCTION

CW dual-Mode filters offer high Q-factors at reduced size
and weight, but the high expenditure for manual tuning is
a major drawback. Replacement of tuning screws by ex-
actly premachined sections of MRCW (Fig. 1) was there-
fore proposed in [1]. To make it feasible, accurate design
tools are required: essentially a rigorous electromagnetic
field (EMF) analysis embedded in a filter optimization proce-
dure. A rigorous approach to this problem is the well known
MMNR of discontinuities between cascaded waveguide sec-
tions (e.g. [2]). By decomposing the problem such as to leave
the EMF analysis part (determination of cut-off frequencies
and modal coupling coefficients) frequency independent and
only a relatively simple multi-mode transmission line net-
work analysis frequency dependent, it is also very efficient.

Fig. 1: Short sec-
tion of MRCW
replaces tuning
screws in a CW
dual-mode filter.
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As opposed to some classical applications (e.g. [3]),
MRCW cut-off frequencies and CW-MRCW modal cou-
pling coefficients are accessible only by numerical methods.
This problem has been subject of a considerable number of
investigations in the recent past [1, 4, 5, 6, 7]. Apart from
accuracy and efficiency requirements, completeness of the
computed spectrum up to large mode indices (typically sev-
eral hundreds), for all geometrical parameters encountered
within an optimization loop, is a key problem in this context.
Up to now, there is, to the authors knowledge, only a single
very recent publication [8] which gives results for more than
a few low order modes in MRCW.

Combining the MMNR with the BIEM [9, 10] offers sev-
eral distinct advantages. The 3-d EMF problem is reduced
to a set of 1-d eigenvalue problems for plain functions. Cou-
pling coefficients are efficiently obtained as 1-d inner prod-
ucts over these functions. Also, in contrast to numerical
methods which dictate allowed ridge shapes [7, 8], exact
parametric representation of an arbitrarily curved waveguide
contour is possible. Furthermore, field singularities can eas-
ily be accounted for.

ANALYTICAL FORMULATION

The fields within a waveguide cross-section  C R? (Fig. 1)
can be derived from TM and TE Hertz potentials a}, and
ay,, respectively, where ¢}, ¢! : @ — R are eigenfunc-
tions of the Helmholtz equation with eigenvalues k!, € R}
(TM) and h!! € Ry (TE). The BIEM reduces the 2-d eigen-
value problems to 1-d eigenvalue problems for the traces

u:I=R, s 9¥(r(s)) )
and v:I- R, s n,grad, ¥(r(s)) )

of ¢!, and 1)!! along the waveguide contour 95} with the pa-
rameterization r : I — 8Q,s = r(s). v}, and u)., which
correspond to TM mode axial and TE mode transverse tan-
gential surface current densities, respectively, are obtained as
eigenfunctions of the BIEs

G[J'](t) := / g (t,8)v'(8)ds = 0 3

I\{z}

1996 IEEE MTT-S Digest




and

K[u"](t) = / "(s) (ke (8, ) = ho(t, 9)) ds

1
+ / (u'(s) — u"(t)) ko(t,8)ds =0. (4)
I\{#}

With the abbreviations p := r(t) and q := 7(s), the kernels
are given by gn(t,s) := Ko(jh|lp — ql}), whichfor h = 0
becomes go(t,s) = —In(||p — q||), and its normal deriva-
tive ki (¢, s) := n(s) grad, gx(t, s). The decomposition of
the integral in (4) assures uniform convergence of each term
as r(t) approaches a singular boundary point, which is re-
quired for numerical evaluation of the integrals [9].

For evaluation of coupling coefficients only the above
traces v}, and u,, for MRCW and in addition the analytically
accessible traces u/, and v}, of TM and TE modes in CW
with respect to the MRCW contour and their eigenvalues h;,
and h!, are required. With the understanding that subscript
m refers to CW and subscript n to MRCW quantities, respec-
tively, the non-vanishing coupling coefficients are obtained
as

1y 2
RE = g [ O
I

d
Cm = / i (8) g Un(s) ds, ©
and I

R 2
Cmep = W E— pi / Um(s)un(s)ds. ()
I

The integrals extend over I = »71(8Qyrcw) C R The
usual definition would require that all the trace functions in
(5)-(7) are normalized such that each mode carries a power of
unity. For the MRCW modes this normalization is not easily
obtained with the present approach. In a cascaded structure,
however, mode normalization is of significance only in the
reference planes. If these allow for analytical treatment, as
in the case of CW, lack of a normalization procedure presents
no problems.

NUMERICAL PROCEDURE

For approximate numerical solution of (3) and (4) the trace
functions v/, and u, are expanded into N quadratic B-splines
over a partition of the Interval I which maps onto Q2 with
approx. 4 elements per transverse wavelength A, of the
highest desired mode (Fig. 2). A priori estimates of Ay, are
obtained from the asymptotical distributions of CW eigen-
values. To solve for the first 100 TE or TM modes requires
no more than approx. 100 expansion functions. The small
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Fig. 2: Geometrical parameters and boundary partition for
MRCW with (a) rectangular and (b) circular ridge shape.

number reflects the absence of orthogonality relations be-
tween trace functions for different eigenvalues. While u"
(TE mode tangential surface current density) is regular and
well represented with B-splines, v' (TM mode axial sur-
face current density) exposes weak singularities about sin-
gular boundary points. Apart from a non-equidistant parti-
tion (Fig. 2a) edge terms with the precomputed asymptoti-
cally exact singular behaviour are therefore added. Numeri-
cal evaluation of the integrals comprises an adaptive per ele-
ment coordinate transform to remove kernel and edge singu-
larities followed by a modified Romberg scheme which ter-
minates at a specified relative error (typically 10~7). This
approach decouples the integration error from the number of
expansion functions and such assures an accurate represen-
tation of curved boundary segments. Discretization of the
residual of the BIEs relies on the Method of Least Squares
with Intermediate Projection with approx. 2N weighting
functions, an approach which is necessary to exclude the oc-
currence of spurious solutions [11]. The final (overdeter-
mined) homogeneous matrix equations are solved by singu-
lar value decomposition (SVD). For given trial value of h
(i.e. either b’ or h'"), the smallest attainable residual is just
the smallest singular value oy (h). Near zeroes of oy (h) in-
dicate that the corresponding singular vector Cn (h) approx-
imates the coefficients of expansion of an eigenfunction.

Multiple eigenvalue search algorithm

The key problem for the present application is completeness
of the spectrum up to large mode indices (hundreds of TE and
TM modes, each) for any set of geometry parameters which
may be encountered within an optimization loop. Accidental
degeneracies and clustering of eigenvalues, however, present
a severe problem for all methods which include a search pro-
cedure for detection of eigenvalues. Approaches which rely
on tracing the minimally attainable residual o (h) are bound
to fail, however small the sampling interval may be chosen
(Fig. 3a).

The solution to this problem was accomplished by a novel
Multiple Eigenvalue Search Algorithm (MESA). It is based



Fig. 3. Typical example for (a)
minimum residual o (h") of (4)
as usually considered, (b) set of
residual functions r;(h'') as in-
troduced in the new algorithm
(MESA) which allows for re-
liable detection of (nearly) de-
11 generate modes. Arrows mark
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on (i) the analyticity of all quantities with respect to A, (ii)
the orthogonality between degenerate trace functions and
(iii) the fact that the SVD yields, for each trial value of
h, a set of mutually orthogonal candidate solutions (the
singular vectors C;(h)) ordered in sequence of decreasing
residual (the singular values o;(h)). As a consequence de-
generate solutions identify as near zeroes of the residu-
als on(h),on—1(h),... of two or more orthogonal candi-
date solutions Cy,Cn_1(h),.... Due to analyticity in A,
closely neighbored eigenvalues still correspond to almost or-
thogonal traces and singular vectors. Hence, by introducing
an index transformation P : {1,...N} — {1,...,N},
based on comparing inner products between singular vectors
Ci(h) and C;(h+Ah), it is possible to define residual func-
tions r;(h) := op(;)(h) which are bound to and evolve to-
gether with a specific candidate solution (Fig. 3b). By ex-
amination of the smallest (currently 6) of these residual func-
tions identification of very closely neighbored eigenvalues is
put on the same footage as that of degenerate eigenvalues.
The approach allows for reliable detection of all eigenvalues
with little numerical overhead. It even improves overall ef-
ficiency by allowing for a larger sampling interval Ah.

APPLICATION EXAMPLES

The method has proven successful in determination of large
numbers of TE and TM modes and evaluation of coupling
constants for several MRCW configurations with rectangu-
lar (Fig. 2a), circular (Fig. 2b) and also trapezoidal ridges.
Only a few typical results can be given here. Fig. 4 displays
the dependence of TM and TE eigenvalues on the penetra-
tion of the coupling ridge for a MRCW configuration which
was previously considered in [1]. Fig. 5 shows the surface
current density along 9 for two randomly selected TM and
TE modes in this configuration. The TM mode edge singu-
larities are clearly a disadvantage because they require for a
large number of CW modes within the MMNR, and also add
to ohmic losses. They can be avoided with a smooth ridge
shape and it may be counted as one of the advantages of the
present approach that there are basically no restrictions on
the shape of the MRCW contour. Results for circular ridge
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shape (Fig. 2b) are given in Fig. 6 with the penetration of the
horizontal pair of tuning ridges as a parameter. Fig. 7 illus-
trates the absence of edge singularities.
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Fig. 4: Influence of coupling ridge penetration (1 — d..) on (a) the first 17 TM and
(b) the first 30 TE eigenvalues for the MRCW of Fig. 2a withdy, = d, = 0.8, by, =
by = 0.26105 and b, = 0.08724. Symbols refer to data from [1].
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Fig. 5: Illustration of (a,b) axial and (c,d) transverse tangential surface current den-
sities along the MRCW contour of Fig. 2a with parameters as given in the caption of
Fig. 4 and d. = 0.55 in case (a), d. = 0.75 in case (b) and d. = 0.8 in cases (c) and
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Fig. 7: Avoidance of TM-mode sin-
gularities due to smooth ridge shape
for MRCW of Fig. 2b with d, = 0.8,
d, =0.7andd. = 0.9.

(b) Js,4 for 16" TM mode



